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J. Phys. A: Math. Gen. 15 (1982) L351-L355. Printed in Great Britain 

LE'ITER TO THE EDITOR 

Successive derivatives of H for a solution of Boltzmann's 
equation do not alternate 

A J M Garrett 
Cavendish Laboratory, University of Cambridge, UK 

Received 19 March 1982 

Absbrd. The conjecture that successive time derivatives of the Boltzmann entropy 
alternate in sign during free thermal relaxation governed by the nonlinear Boltzmann 
equation is shown to be false: the Bobylev-Krook-Wu solution of this equation is an 
explicit counter-example. 

The Boltzmann entropy H for an evolving system of similar particles described by a 
velocity distribution function f (u ,  1 )  in d dimensions is given by 

H =I.. . I f In f ddu. (1) 

For solutions of Boltzmann's nonlinear integrodifferential equation for the evolution 
off in the absence of external force fields and spatial inhomogeneities, the H theorem 
states that H always decreases, and thereby guarantees that the system relaxes to 
thermal equilibrium. It has been conjectured (McKean 1966) that the theorem can 
be generalised to the statement that H is completely monotonic in the sense of Widder 
(1941): 

In the same paper McKean also conjectured that property (2) singles out one particular 
functional as the physical entropy for the system; indeed Harris (1968a, b) was moved 
by such considerations to use a definition of entropy different from (1). Clarification 
of these issues is therefore of considerable importance. Property (2) has been studied 
for various model kinetic equations; the references are given by Ziff et a1 (1981). 
However, the question of whether (2) holds for the Boltzmann entropy (1) when the 
evolution is governed by Boltzmann's nonlinear integrodiff erential equation has, until 
now, remained open. There seems little prospect of checking (2) directly from (1) 
and the Boltzmann equation when n is large: indeed, it does not appear to have been 
done beyond n = 1 (the H theorem). The present paper shows that (2) is not valid 
under these circumstances: this disproof is achieved by finding a specific counter- 
example. The example considered is the Bobylev-Krook-Wu (BKW) solution of 
Boltzmann's equation for particles which interact with each other with a differential 
collision cross section inversely proportional to collision speed (Bobylev 1975, Krook 
and Wu 1976). This solution is isotropic in velocity space, and describes the relaxation 
to thermal equilibrium of a particular class of initial velocity distribution functions. 
It was previously supposed on the basis of numerical studies that the Boltzmann 
entropy for the BKW solution did satisfy (2) (Ziff et a1 1981). 

(-d/dt)"H 3 0 V n  30.  (2) 
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The method of disproof is as follows: it is obviously a sufficient condition for H 
to be completely monotonic that it is expressible as the Laplace transform of a 
non-negative definite function. For if 

r W 

H ( t )  = J $(s) exp(-st) ds, $ ( s ) s O i n s s O  
0 

then 
ar, 

(-d/df)"H = s"$(s) exp(-sf) ds 3 0. 
0 

(3) 

(4) 

Implicit in (4) is the condition that the integrals converge. Now it is a mathematical 
result that the condition is necessary as well as sufficient (Bernstein 1928, Widder 
1941, theorem 12b, p 161). We show that, for the BKW solution, H is either not 
expressible as a Laplace transform, or if it is then the corresponding function $ is not 
non-negative definite. Although only one of these possibilities can be true, the truth 
of either suffices to disprove (2) in view of the necessity of (3) to hold for H to be 
completely monotonic; consequently we do not pursue the matter further. It is 
necessary to use the Laplace-Stieltjes transform, or equivalently here to allow $(s) 
to be distribution valued; h c r  ever Widder's result still holds in that case. 

The BKW solution in d dimensions is 

f(u, r )  = ( 2 ~ p ) - ~ ' ~  exp(-u2/2p)[1 +@-'(I -p)(u2/2p -id)] 

p( t )  = 1 -(I +id)- '  exp(-r) 

( 5 )  

where 

(6) 
and is given in the original references of Bobylev (1975), Krook and Wu (1976). Both 
velocity and time have been scaled appropriately, the former by the second (energy) 
moment of (9, which is conserved, and the latter by an integrated moment of the 
angular dependence of the collision cross section. It is necessary for f to be non- 
negative at all velocities and successive times that t 3 0: this differs from the convention 
of Ziff et a1 (1981) by a time translation of ln(1 + i d ) .  By substituting ( 5 )  into ( l ) ,  
performing the angular integrations, changing the scalar variable of integration to 
v2/2/3, integrating by parts to remove the logarithm, and finally differentiating with 
respect to time (which causes much simplification on use of standard properties of 
the functions involved), 

(7) 

y = l + $ d  (8) 
(Ziff er a1 1981). The function U in (7) is a confluent hypergeometric function 
(Abramowitz and Stegun 1965, ch 13). We now use its asymptotic expansion for 
large argument: 

(9) 

-dH/dt = y ( y  - l)[y exp(t) - 1]-2U(2, 2 - y, y[exp(t) - 13) 

where 

U(2 ,2-  y, Z )  -~-'[1-2(1+ Y)z-' + 3(2 + y ) ( l +  Y ) z - ~ - .  . .] 
to expand (7) in the first few inverse powers of exp(t): 

-dH/dt = - l)[exp(-4t) 

+ ~ - ~ ( 5 + 3 y )  exp(-6t)- 1 4 ~ - ~ ( 1  + y )  exp(-7t)+R(t)] (10) 
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where the remainder R( t )  is given, tautologically, by subtracting (7) from (10): 

~ ( t )  = y4[y exp(t) - ~ I - ’ w ,  2 - Y ,  y[exp(t) - 11) 

-exp(-4t)-y-’(5+3y) exp(-6t)+ 1 4 ~ - ~ ( 1  + y )  exp(-7r). (11) 

R ( t )  is O[exp(-8t)] ast-,oo. (12) 

From (9), 

We now consider the possibility of writing (10) as a Laplace transform; from (4) 
we see that if this is feasible, (10) is none other than the Laplace transform of s J l ( s ) .  
It is possible that R( t )  cannot be written as a Laplace transform: this would be the 
case, for example, if it contained terms falling off more quickly than any power of 
exp(-t). It would follow from (10) and (4) that H could not be written as a Laplace 
transform. On the other hand, if R ( t )  can be written as a Laplace transform of a 
function d(s), then from (12) 

ebb) = 0 for s < 8. (13) 

From (10) and (4) it follows that the function Jl of which H is the Laplace transform, 

(14) 

is not non-negative definite, since in view of (13) and (14) it has a negative spike at 
s = 7 .  The result that (2) is not true now follows from the argument based on 
Bernstein’s work given below (4). 

Why is there no sign of this breakdown in the numerical studies of Ziff et a1 (1981), 
who considered 1 s d ss 6, 0 ss n =s 30 and 0 C t C 4.5? The explanation cannot lie in 
an insufficient range of d, for either R ( t )  cannot be written as a Laplace transform 
for any d, or if it can then a glance at (14) shows the spike at s = 7 is negative for all 
d. Nor is the problem likely to reside in an insufficient range of r, as the graphs 
presented there (d = 3, n s 20) seem by t = 4.5 to have settled down to their predicted 
large-time exponential decay (although successively higher derivatives take success- 
ively longer to settle down). A function different from H is used as a calculational 
vehicle by these authors, but the statement still holds. On the other hand, it can be 
shown analytically that any violation of the alternating derivative property cannot 
happen before n = 7, and is most unlikely to occur for at least several values beyond 
that. It therefore seems that the calculation of an insufficient number of derivatives 
led Ziff er a1 to the opposite conclusion. The argument is set out below. 

From Leibnitz’ theorem it can be verified that the product of two completely 
monotonic functions is itself completely monotonic. Now [ y  exp(t) - 13-’ is completely 
monotonic since it is the Laplace transform of the non-negative definite function 

$(s) = y V 3 ( y  - l)[$S(s -4)  +67-’(5 + 37)S(s - 6 ) - 2 ~ - ~ ( 1 +  ~ ) S ( S  -~ )+s - ’c$ (s ) ] ,  

a, 

y-ps(s -p ) .  
p =  1 

Therefore, from (7), it suffices to prove that U(2 ,2  - y, z ) ,  where 

= y[exp(t)- 11, (16) 

has alternating time derivatives up to n = N in order to demonstrate the same property 
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for H up to at least n = N + 1 (Ziff et a1 1981). Now 

U C 2 -  y, 2) = J x(1 +x)- ' - '  exp(-zx) dx (17) 
0 

(Abramowitz and Stegun 1965, formula 13.2.5) and so 

d dz d 
dt dt dz 

- -U(2 ,2-y ,  z ) = - -  -U(2 ,2 -y ,  2) 

m 

= ( y  + z )  jo x2(1 +x) - ' - '  exp(-zx) dx 

= [0mx(2+x+yx2)(l+x)-2-'  exp(-zx)dx, (20) 

(19) 

integrating (19) by parts to remove the factor of z .  Since the integrand in (20) is 
positive definite, dU/dt is negative, and so H has alternating derivatives up to n = 2. 
By successive differentiations and integrations by parts it may further be shown that 

r m  

(-d/dt)"U(2,2- y, z )  = J xPZm(x)(1 +x) -" - ' - '  exp(-zx) dx (21) 
0 

where the polynomials P2" ( x )  are given by 

and the ydependent coefficients ( 6 )  obey the recurrence relation 

b!"" = (r +2)bj"' + ( r  - m)6!!! + yb:!';, 

with starting condition 

6;"' = o if q > 2m or <O (23) 

6:'' = 6,o. (24) 
Direct but tedious evaluation now shows that all 6:"' are non-negative for 0 s m s 3, 
and so Po, P2,  P4 and P6 are certainly positive definite in x 2 0. For m = 4 ,5  the only 
negative coefficients occur when r = 1; by considering the lowest three powers of x 
in Ps and Plo and completing the square, these polynomials can also be demonstrated 
to be positive definite in x 8 0 .  From (21) derivatives of U(2 ,2 -y ,  z )  therefore 
alternate in t up to at least m = 5. Furthermore, since the operation -d/dt on (21) 
merely introduces a positive definite further factor x ( y  + z )  into the integrand (before 
integration by parts) the result can be extended one value further to m = 6. Alternation 
of derivatives of H is therefore assured in (2) at least up to n = 7. Moreover, the 
'margin of safety' by which P2" is positive definite is large, at least up to m = 5, and 
the violation seems unlikely to occur for at least several values of m beyond this: it 
is not only necessary that PZm be non-positive definite, but, more strongly, that (21) 
be negative for some z .  That the violation is not surprising from this outlook can be 
seen by solving (23) for lower values of r :  

bi"' = 2", 6:"' = (m + 1)2" -3". (25) 
These can be confirmed by substitution in (23): the coefficient 6:"' becomes progress- 
ively more negative as m increases. The recurrence relation (23) is not solved here 
for arbitrary r. 
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Since H is completely monotonic for t << 1 (from (17), since z CC t for t<< 1, and 
U(2,2 - y, z)  is the Laplace transform of a positive definite function) and for t >> 1 
(from (10)) and tends to zero in the latter case, the number of zeros in (-d/dt)""H(t) 
either equals the number in (-dldt)" H or exceeds it by an even number. The reader 
can quickly be convinced of this by drawing graphs of functions with these properties. 
Consequently if (-d/dt)N H is found to be positive for all time t(aO), it must be so 
for all n < N. This fact is of potential use in a numerical search for the lowest n for 
which violation of (2) occurs; such a study would be of considerable interest. 

Finally we note that the McKean conjecture (2) is likely to be incompatible with 
the Krook-Wu conjecture that many solutions of the Boltzmann equation relax by 
first tending rapidly to the BKW mode, which then evolves according to (5 ) .  This 
mechanism would be likely to cause maxima and minima in the second (or higher) 
derivatives of the Boltzmann entropy near the time at which the transition from rapid 
to BKW relaxation occurs, and consequently violates (2). Although the Krook-Wu 
conjecture has been largely discredited (Ernot 1981) the clash is still noteworthy. 

Thanks are due to Robert Ziff for early communication of a preprint, and Kenneth 
Budden for discussions. 
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